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We present results for pattern formation at the onset of convection in fluid-saturated
porous media obtained by a novel variation on the shadowgraphic technique (mod-
ified shadowgraphic technique). Both ordered and disordered media are used, each
exhibiting distinct behaviour. Ordered porous media are constructed from grids of
overlapping bars. Convective onset in this type of medium is characterized by a sharp,
well-defined bifurcation to straight parallel rolls. The orientation of the convection
rolls is determined by the number of bar layers, Nb; odd Nb leads to rolls with axes
perpendicular to the direction of the top and bottom bars, and even Nb to rolls
at 45◦ to the bars. Disordered porous layers are produced by stacking randomly
drilled disks separated by spacers. In this system, we observe a rounded bifurcation
to convection with localized convection near convective onset. More specifically, the
flow patterns take on one of several different three-dimensional cellular structures
after each cycling through convective onset. These observations may be described
by two different mechanisms: random spatial fluctuations in the Rayleigh number
(Zimmermann et al. 1993), and/or spatial variation in the thermal conductivity on
the length scale of the convection wavelength (Braester & Vadasz 1993).

1. Introduction
The present experiments are a continuation of the preceding study, Part 1,

(Shattuck et al. 1997) to probe pattern formation and the accompanying heat flow
for convection in a fluid-filled layer of porous medium. In the previous paper, we
present experiments which utilize magnetic resonance imaging (MRI), a powerful tool
which allows non-invasive determinations of the local density, velocity, and temper-
ature of the fluid within a porous medium. This work also contains a survey of
important issues regarding convective pattern formation in general and porous media
convection in particular, and we refer the reader to it for definitions or parameters.
Here, we show that simple porous media can be constructed which allow easy vi-
sualization of the patterns by shadowgraph. We refer to the use of a shadowgraph
with these special media as a modified shadowgraph technique (MST) (Howle 1993;
Howle, Behringer & Georgiadis 1993a,b). We present an exploration of several dif-
ferent kinds of media which exploit the MST. In the introduction of this work, we
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consider two issues which pertain in particular to the present experiments: the effects
of anisotropy and of horizontal variations in spatial properties.

From both sets of experiments emerge two related points: first, for dense fluids
such as water, the ratio of pore size to layer height cannot be made effectively
infinitesimal; and second, as a consequence, the structure of the medium leaves
its imprint on the pattern selection process, and therefore on many details of the
convective flow. The limits on the ratio of pore scale to layer height occur because
of conflicting constraints: the fluid should obey the Boussinesq approximation, yet
relaxation times must be small enough to carry out experiments over acceptible time
scales. This situation is not a result of the way in which the media are constructed,
but is linked intrinsically to the transport and thermodynamic properties of typical
fluids, such as water. Consequently, the usual assumption of spatial uniformity may
not be justified.

The rest of this work is structured as follows. In the following section, we discuss the
experimental techniques used for this work, in particular the modified shadowgraphic
method for pattern visualization in fluid-saturated porous media. We also discuss
the inherent limitations on the Darcy number in convection experiments. We present
experimental results for four different media in §3. These results indicate that the
structure of the solid matrix plays a key role in the pattern formation and heat
transport. Section 4 contains concluding remarks.

Before proceding to the discussion of the shadowgraph experiments, we briefly
review recent work concerning the effects of anisotropy and of spatial parameter
variation. In general, porous media need not be isotropic. The criterion for the onset
of convection was extended to anisotropic media by Castinel & Combarnous (1975),
Epherre (1975), and Kvernvold & Tyvand (1979). Kvernvold & Tyvand (1979) show,
citing Epherre (1975), that onset to convection in anisotropic media occurs at the
critical Rayleigh number

Rac = π2

[(
η

ξ

)1/2

+ 1

]2

(1.1)

with a corresponding wavenumber

q = π(ξη)−1/4 . (1.2)

Here, η is the ratio of the horizontal to the vertical permeability and ξ is the ratio of
the horizontal to the vertical conductivity.

A related issue is the effect of spatial variations in such parameters as γ or κm
on the convective flows. The most frequently studied non-uniformity is poros-
ity variation near a boundary as in the work by Vafai (1984), and Amiri &
Vafai (1994). However, we find that spatial variations throughout the medium
may be important. Some information on this issue is available (Vincourt 1989;
Néel 1990; Gounot & Caltagirone 1989; Zimmermann, Sesselberg & Petruccione
1993; Braester & Vadasz 1993).

Regarding spatial variations of γ and κm we contrast the recent work of Zimmer-
mann et al. (1993) and of Braester & Vadasz (1993). Zimmermann et al. have shown
in the context of the Swift–Hohenberg model (Swift & Hohenberg 1974) that random
spatial fluctuations in the Raleigh number lead to localized modes and a rounded
heat transport curve. Although the modes are localized and rounding appears in
Nu(Ra), the bifurcation is still sharp. Braester & Vadasz consider continuous spatial
variations of γ and the thermal conductivity in the context of bifurcation theory.
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The key point here is the existence of steady solutions, other than the conduction
solution, for Ra < Rac when γ and km, the thermal conductivity, vary spatially. If
no-flow solutions do not exist below Rac, then the resulting weak flow will couple
resonantly near Rac. The result will be an imperfect bifurcation, as seen for instance
in experiments by rounding in the Nusselt curve. The existence of non-zero flow
below onset depends only on the spatial form of km. Specifically, given the Darcy
equation for steady flow

− ∇P − (µ/γ)v + ρg = 0, (1.3)

a necessary condition for a v = 0 solution is that

∇ρ× g = 0. (1.4)

Here, ρ depends only on the temperature profile T (r), and the temperature profile
is determined, through the heat equation, by km. The key point of their analysis is
that horizontal spatial variations in km can be inconsistent with a no-flow solution at
any Ra. The result is an imperfect bifurcation. Specifically, the normal form for the
critical mode amplitude, A, has the form

Ȧ = εA− A3 + β, (1.5)

where

ε = (Ra− Rac)/Rac, (1.6)

and β is a measure of the spatial projection of km(r) on the critical mode. Since
the convective contribution to the heat transport varies as A2, the effect of β will be
apparent in the dimensionless heat transport Nu.

There are important conceptual differences in the scenarios offered by Zimmerman
et al. and by Braester & Vadasz. Specifically, the former indicate a sharp bifurcation
to convection even though Nu should show rounding; the patterns are expected to
be cellular rather than roll-like. The latter consider only roll-like solutions in the case
in which a no-flow state is specifically excluded. Key to the differing models is an
assumption about whether there is – or is not – a no-flow state for positive ∆T .

It seems likely that in the disordered media used in the present experiments
both effects are present. Specifically, the disordered patterns observed here for our
disordered media are consistent with the predictions of Zimmermann et al. (Indeed,
their predictions provide an alternative explanation in general for the polygonal
patterns reported in previous experiments.) However, there may be small horizontal
temperature gradients in our experiments because of the differing conductivities of
the fluid and solid. Hence, the rounding in the heat transport which we observe for
disordered media may have its source in both effects.

2. Experimental method
The aim of the present experiments is to provide non-perturbative images of the

convective planform in conjunction with high-resolution heat transport measurements.
These data provide a test of both older theories, as well as a test of recent models
which probe the effect of local parameter variation on pattern selection.

The primary difficulty in obtaining images of the convective pattern for porous
media convection (PMC) is that the fluid and solid matrix generally do not share the
same index of refraction, even if the latter is transparent. Consequently, in a typical
porous medium constructed from spherical particles, light which enters the medium is
rapidly diffused, thus making visualization by optical techniques ineffective. However,
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(b)

(c)

(a)

Figure 1. (a) Cell A: Scale drawing of the regular porous layer with rectangular sidewalls. (b)
Cells B and C: Geometry of the bar medium with a cylindrical planform including the sidewalls.
Each successive layer is rotated by π/2. (c) Cell D: Disordered porous medium consisting of five
pseudo-randomly perforated discs separated by annular spacers.

it is possible to construct media with fluid–solid interfaces which are perpendicular
or parallel to some direction of light travel. In this case, imaging with a shadowgraph
is possible, even without any index matching. We refer to this construction as a
modified shadowgraphic technique (MST) (Howle et al. 1993a, b and Howle 1993).

We have used two qualitatively different types of structures for the MST and
many others are possible. Here, we present detailed results for four structures which
represent two of these possible media. We will refer to these as cells A, B, C, and D;
their properties are summarized in table 1.

The first general matrix for the MST, which we refer to as ‘regular’, consists of
a periodic stacking of bars, as exemplified by figure 1(a) for cell A, which contains
six layers. We have carried out additional experiments with five and seven (cell C)
layers of bars. In experiments using regular media, the lateral boundaries have either
rectangular cross-sections, like cell A, or circular cross-sections, like cells B and C.
We describe in detail the structure of cell A. Other regular media differ only in the
number of layers or in the shape or size of the lateral boundaries.

For cell A, each of six layers was constructed from 0.159 cm thick polycarbonate
sheets. Slots, of 0.159 cm width were machined along the length of the sheet. The slots
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were spaced two slot widths apart (centre to centre) so that the porosity of these media
was φ = 0.5. Alternate layers were rotated by 90◦ about the vertical axis relative
to the immediate neighbouring layers. The third layer had the same orientation as
the first but was offset by one half of the grid period. Similarly, the fifth layer was
offset from the third, the second from the fourth, etc. This was repeated until the
desired number of layers was reached. The offset of every other layer prevented the
fluid from having an unimpeded path when traversing the layer vertically. The lateral
dimensions of the layer were Lx = 5.56 cm and Ly = 2.70 cm. The medium height was
L = 0.902 cm; hence the aspect ratios were Γx = Lx/H = 6.16 and Γy = Ly/H = 2.99
respectively.

We determined the medium permeability by measuring the flow rate through the
medium of a viscous fluid, typically glycerin, versus pressure provided by a column
of the fluid. We also determined the temperature of the fluid, since the viscosity
of glycerin is strongly temperature dependent. We obtained data for fifteen column
heights, and fitted these data to a line to obtain the permeability and to verify that
the overall flow was Darcian.

We also determined the thermal conductivity of the water-saturated medium, except
for cell A, by placing the saturated medium in a stabilizing thermal gradient and
measuring the temperature difference across the layer versus the power input from
a resistive heater. Measurements of both conductivity and permeability in the two
characteristic directions of these media as shown in table 1. The tables show that
the media are only slightly anisotropic in the sense of Kvernvold & Tyvand (1979)
(i.e. vertical versus horizontal anisotropy). To obtain the conductivity of cell A we
used a weighted average of the conductivities of the fluid and solid materials. We did
this rather than measure the conductivity in a stabilizing thermal gradient because
the containing walls (not shown in figure 1) transport a non-negligible fraction of the
heat which was difficult to determine precisely.

Table 1 also contains information on the Darcy number, Da, and the Prandtl
number, Pr. The latter is the porous-medium Prandtl number based on the vertical
thermal diffusivity:

Prm =
ν

κm
. (2.1)

The porous thermal diffusivity is

κm =
km

(ρcp)f
(2.2)

where ρ and cp are the density and specific heat at constant pressure of the fluid
respectively and the subscripts m and f refer to medium and fluid respectively. We
use specific heat data for water from Lide et al. (1993). The Darcy number is defined
by

Da =
γv

H2
(2.3)

where γv is the vertical permeability.
We next turn to the construction of cells B and C. These media are identical in

internal structure to the rectangular grid medium but the horizontal planform, as
shown in figure 1(b), is cylindrical rather than rectangular. Cells B and C consist of
six and seven bar layers respectively. The radius of each grid disk is 3.02 cm. The
aspect ratios (Γ ≡ radius/H) are 3.35 for the six-layer medium, cell B, and 2.87 for
the seven-layer medium, cell C.
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Laser light

Flat
Sapphire window

Radiation shield

Cooling water

Porous medium

Heated lower boundary

Figure 2. Experimental apparatus showing porous medium location and cooling water flow.

The final medium, cell D, has a disordered structure, as sketched in figure 1(c). This
medium consists of disks with the same 0.159 cm thickness as the three other media.
However, in this case, each disk has 362 non-overlapping 0.159 cm diameter holes
(with some additional space around each hole) which are random-densely placed.
We stacked all the disks together and drilled them simultaneously with the same set
of holes. We then stacked a number of these disks together to form the medium.
During assembly, we rotated each disk in the stack approximately 60◦ relative to
its predecessor in the stack. Annular spacers 0.051 cm thick separate each of the
five disks in this medium. Spacers also separate the disks from the upper and lower
bounding surfaces. The porosity of each disk is 0.251. Including the void space created
by the spacers, the net porosity of the disordered medium is 0.314. We list parameters
of the disordered medium in table 1. Because we know the hole coordinates of each
disk, we also know the spatial details of the medium. It is possible, in principle, to
tune the gap between disks in order to eliminate the horizontal/vertical anisotropy
in the permeability and/or conductivity. However, we have not attempted to do so
in the media used here, because these anisotropies are relatively small.

The working fluid used for all experiments was distilled and deionized water.
The water was degased before we filled the medium. Even with degased fluid, an
experimental run had a limited lifespan, usually about one month, before small
bubbles appeared. We stopped a run when bubbles first occurred.

We show a schematic of the experimental apparatus used for simultaneous thermal
measurement and pattern visualization in figure 2. Thermal control of the upper
boundary and the radiation shield is maintained by a recirculating bath which flows
constant-temperature controlled water between the upper boundary of the porous
medium (sapphire window in figure 2) and a crown glass optical flat. The advantage
of sapphire over other transparent materials for use as a boundary is that the high
thermal conductivity (0.40 W cm−1 K−1) reduces horizontal thermal gradients at the
boundary. A regulated thermal controller maintains the temperature at the upper
boundary constant at 25.000◦C ± 0.002◦C.

We measure temperature with precision thermistors, eight of which are in thermal
contact with the upper sapphire boundary and two of which are in thermal contact
with the lower boundary. A scanning digital multimeter reads the resistance of
the thermistors at specified time intervals and stores the data in a computer. The
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resolution of the temperature measurements is ±0.0003 K. In addition, we use a
high-precision AC differential bridge circuit to monitor the temperature difference
across the porous layer.

The lower boundary consists of an oxygen-free, high-conductivity copper block.
A regulated voltage supply provides current to a heater which is glued to the
lower boundary. Due to the very high conductivity of the copper block, we expect
that the appropriate thermal boundary condition is one of constant temperature
(Metcalf & Behringer 1991) rather than of constant heat flux. Specifically, horizontal
thermal gradients are minimized at the boundary. The upper surface of the copper
block (which contacts the medium) is flat to one half-wavelength of the laser light
used for visualization, per inch. This surface is gold-plated in order to provide a
highly reflective surface (99%) for visualization.

A 20 mW 632.8 nm He-Ne laser provides light for shadowgraphic visualization.
The columated light passes through the optical flat, cooling water and sapphire
before entering the saturated porous medium. Light then travels through the medium
and reflects off the lower boundary before traversing the medium a second time. A
computer-driven frame grabber acquires the image. By appropriately choosing the
distance between the image plane and the medium we maximize the contrast in the
image.

The porous medium is small enough that the vertical thermal diffusion time is only
about 6 min. This means that the time required for the relaxation of fluid transients,
once a change has been made in the power input, is less than an hour, except near a
bifurcation point, where critical slowing down effects may occur.

3. Experimental results
We consider first experimental results obtained with the regular media, cells A–

C, followed by those for the disordered medium, cell D. These results consist of
data near onset of convection, including the critical Rayleigh number, the Nusselt
number, the pattern at onset and the associated wavenumber. We also present results
for secondary instabilities which occur well above the onset of convection. It is
convenient in presenting these results to use the reduced Rayleigh number

R = Ra/Rac = 1 + ε. (3.1)

3.1. Results for cell A

The onset of convection in cell A, which has a rectangular horizontal planform and a
regular bar structure, is characterized by a sharp change in the slope of the data for
Nu(Ra) and well-defined straight parallel convection rolls. To our knowledge, these
data and those of Shattuck et al. (1994, 1995, 1997) are the first clear observations
of a parallel roll convection pattern for PMC. Nusselt data for cell A are shown in
figure 3(a). Within our resolution of about 0.1%, there is no rounding at the onset of
convection, as emphasized by the expanded plot in figure 3(b).

The convection patterns for this cell, consisting of straight parallel rolls, are
typified by figure 4, which pertains to R = 1.93. Similar patterns are observed from
the smallest R, R ' 1.05, for which the pattern is discernable to R ' 3.0 at which
point a secondary instability occurs. These patterns are notable for two reasons.
First, although theoretically predicted near convective onset, parallel rolls are rarely
observed. Most often patterns are polygonal (Lister 1990). Second, the rolls intersect
the sidewalls at an angle of 45◦, rather than 90◦ which is typical for Rayleigh–Bénard
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Figure 3. (a) Heat transfer data for five experimental runs with the rectangular planform grid
medium (cell A). Onset of convection is observed at Ra = 50± 6. The critical wavenumber in four
of the runs is q = 3.6± 0.3. (b) High resolution heat transfer data for cell A near the bifurcation
to convection.

Figure 4. Typical steady wave pattern near the onset of convection in the rectangular grid porous
medium, cell A. Here, R = 1.93 with q = 3.6.

convection (Cross 1982). We have observed both possible orientations of the rolls,
i.e. slanting right to left or vice versa. An important issue is whether this intersection
angle is caused by the boundaries or by the structure of the medium. The results for
cells B and C, discussed below, indicate clearly that it is the structure of the medium
which leads to the pattern orientations.

The critical ∆T for cell A is very well defined by the Nusselt curve. Using the value
of ∆T at onset, the measured value of the permeability and the known properties
of water and the polycarbonate, we obtain Rac = 50 ± 6. The relatively large
uncertainty in Rac is due primarily to the uncertainty in the thermal properties of the
polycarbonate solid phase. This critical Rayleigh number disagrees somewhat with
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Figure 5. Example of temporally evolving patterns above R = 3.5, for cell A.

the predicted value of Rac = 4π2 for a horizontally infinite homogeneous isotropic
medium. A modest part of the difference between experiment and theory may be
explained by the fact that cell A has a relatively small aspect ratio which would tend
to elevate Rac (Beck 1972). We expect that the remainer of the difference is explained
by the effects of the pore structure on the pattern selection process.

The wavenumber for the pattern in figure 4 is q = 3.6±0.3, which is the wavenumber
which occurs most frequently in this medium. The relative difference, δq/q, between
the measured and predicted q and the relative difference δRac/Rac between the
measured and predicted Rac are comparable. An elevation of q could also account
for the elevation of Rac. However, in one of five experimental runs with this system,
we observed q = 4.0 ± 0.3, with the rolls still oriented at 45◦ with respect to the
sidewalls. (Each run corresponds to a complete replacement of the water and starts
from ∆T = 0.)

The stability of the steady pattern with increasing Ra was strongly wavenumber
dependent. Patterns with q = 3.6 were generally stable to three-dimensional dis-
turbances from onset to approximately R = 3. Above R = 3.5 the patterns were
time dependent with complicated time series. For instance, figure 5 shows a typical
patterns in the time-dependent regime which evolved from a steady pattern with
q = 3.6. By contrast, the q = 4.0 pattern was stable to three-dimensional disturbances
up to at least R = 8. This agrees, semi-quantitatively, with the wavenumber stability
calculations by Straus (1974).

The slope of the Nusselt curve, Nu(R) for R just larger than unity provides a simple
measure of the strength of the convective flow just above onset. Referring to figures 3,
we obtain a slope at onset

S ≡ dNu/dR (3.2)

of S = 0.53± 0.17 in the convective region near onset. This should be contrasted to
the prediction (Joseph 1976) of S = 2.0. The explanation for the difference between
theory and experiments may lie with either the effects of finite H/d (including possible
forcing from the periodic structure of the medium) or finite aspect ratio. In this regard,



Convection and flow in porous media. Part 2 257

Figure 6. Slightly supercritical (R = 1.29) convection pattern for cell B (six layers). The roll
orientation for this case is 45◦ relative to the grid directions.

Figure 7. Convection pattern in Cell C (seven layers). An odd number of layers produces patterns
which align with the grid.

we note that several other experiments have yielded slopes which are low compared
to this prediction. These include Elder (1967) who found S ' 1.0, Shattuck et al.
(1994, 1995) who found S = 0.78, and Close, Symons & White (1985) who found that
S decreased with H/d.
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Figure 8. Typical pattern observed near onset (R = 1.27) in the random medium, cell D.
Convection begins at ∆T = 7.91◦C.

3.2. Results for cells B and C

In order to better understand the origin of the roll orientation for cell A, we carried
out experiments with cells B and C. Both of these cells have the same bar structure
but have cylindrical horizontal planforms as shown in figure 1(b). Cell B is made
from six bar layers, and cell C is made from seven bar layers. We show a typical
result for cell B in figure 6. The roll orientation is 45◦ relative to the grid, as in
cell A. In contrast to the pattern orientation of cell B, those of cell C are shown
in figure 7. In the case of cell C, the rolls are always aligned perpendicular to the
bars in the top and bottom layers. This result rules out the possibility that the
orientation is due to forcing by the lateral boundaries. Indeed, the lateral boundaries
appear to have a weaker influence than in moderate aspect ratio experiments for
bulk-fluid Rayleigh–Bénard convection (Cross 1982). We might expect this difference
because the bulk-fluid boundary condition is no slip while the porous-media boundary
condition is best described as free slip (Joseph 1976).

We heuristically understand the difference between the patterns produced by the
even and odd numbers of layers as follows. For an odd number of layers, the bars
in the top and bottom layers are parallel. It is in these layers that the horizontal
flow is strongest, so that the circulation should contain a vertical component and a
component parallel to these bars. This causes the rolls to be oriented with their axes
perpendicular to these bars. In the case of an even number of layers, the top and
bottom sets of bars are perpendicular to each other. Were the pattern to align with
either set of these bars, convection would be entirely suppressed in the other set. The
roll orientation at 45◦ to either of these layers is the resulting compromise.

3.3. Results for cell D

The last of the three media types is the disordered medium which typically produces
complicated cellular patterns such as that shown in figure 8. In this cell, convection



Convection and flow in porous media. Part 2 259
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Figure 9. Nu versus R for five experimental runs in the disordered medium, cell D. The differences
between the various curves are associated with different patterns produced by each run.

begins in small localized regions of the medium while flow in the rest of the medium
remains quiescent. As the Rayleigh number increases, the pattern spreads outward
from the seed areas, which remain as pinning sites for the pattern. That is, regions of
initially strong flow remain so as the full pattern evolves. When the Rayleigh number
is sufficiently high, convection occurs throughout the entire medium.

For cell D, we find that the measured value Rac = 37±4 is in good agreement with
the expected critical Rayleigh number Rac = 41.1 (with corrections for anisotropy, see
equation (1.1)). We use the point of intersection of the conductive and fully convective
portions of the heat transfer curves (figure 9) to determine Rac. In the regime of R
where convection fills the cell, the slope of Nu(R) is 1.35 ± 0.15 (cell D) which is
reasonably close to the prediction S = 2 (Joseph 1976). In the regime where only
localized convection occurs, the Nusselt curve is rounded. The point where convection
has spread throughout the medium is given approximately by the intersection of the
constant-slope and rounded portions of the heat transfer curve. Since several different
patterns occur, it is reasonable to expect that the Nusselt number will also differ from
run to run. As shown in figure 9, each unique pattern produces a slightly different
curve, Nu(R), in the convective regime.

The critical wavenumber has a relatively large uncertainty because of the irregular
nature of the pattern and the small aspect ratio. Its value, q = 3.0 ± 0.4, is in
agreement with theory within experimental error.

The cellular convection patterns strongly suggest that spatial variation in Ra plays
a key role in the pattern selection, as proposed by Zimmermann et al. (1993).
However, we cannot at this point exclude the possibility of some imperfection
in the bifurcation associated with spatial variations in the thermal conductivity
(Braester & Vadasz 1993). Since the regular media and the random media are equally
Boussinesq and subject to identical boundary conditions at the top and bottom, it
seems unlikely that the breaking of mid-plane symmetry from either of these two
causes is responsible for the formation of the cellular patterns.

4. Conclusions
In this work, we describe in detail a modification of the shadowgraphic technique

for studies of convection in porous media. This technique provides a simple method
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for obtaining simultaneously the convective flow patterns and the heat transport for
PMC. The present work and that of Shattuck et al. (1994, 1995, 1997) provide what
are, to our knowledge, the first non-intrusive determinations of the horizontal flow
patterns for PMC. These results provide new insights into PMC and raise a number
of new issues which could not have been noted previously because of the lack of
information concerning the flow pattern.

The key observation of these studies is that the structure of the medium plays
a fundamentally important and previously unanticipated role in the determination
of the flow pattern. In turn, this necessarily affects the heat transport, since this
quantity is intrinsically dependent on the convective pattern. Thus, straight parallel
rolls are not obtained in the disordered medium, even though that might most closely
approximate an isotropic random porous medium. In addition, the structure of the
regular media forces particular roll orientations.

The explanation for the effect of the solid matrix on the pattern selection lies in
the fact that the pore scale cannot be chosen arbitrarily small compared to the other
key length in the system, namely the height of the convection layer. Specifically, in
designing an experiment, there must be a balance between the competing conditions
that the pore scale be much smaller than the layer height, that the system be
reasonably Boussinesq, and that the relaxation times be short enough to be tractable.
For typical dense fluids such as water, and solid matrix constructions such as sphere
packings, these conditions are mutually exclusive.

Since many past experiments have been constructed with nominally random pore
structures, it is perhaps not surprising that cellular, i.e. localized, patterns have been
typically observed. The measured rounding of the heat tranport seen in the disorderd
media may also contain a contribution from horizontal spatial variations in the
thermal conductivity of the media, leading to an imperfect bifurcation, as in Braester
& Vadasz (1993). We emphasize that the present experiments are constructed so that
there is effective mid-plane symmetry; hence there is no reason to believe that the
cellular patterns are associated with breaking of this symmetry.

Since many (and possibly most) experimentally accessible PMC systems, including
those studied here, fall into the regime for which the pore scale is smaller than
the height, but not microscopically so, an important issue is the development of a
modification of the existing theory which accounts for the inherent structure of the
medium. One approach is to assume, as in recent studies (Gounot & Caltagirone 1989,
Zimmermann et al. 1993, Braester & Vadasz 1993), that the medium properties, such
as the permeability, the thermal conductivity or the Rayleigh number are functions of
space. This is a convenient approach, which may shed some insight into the present
observations. In particular, calculations of Zimmermann et al. with random spatial
variations in Ra are in good qualitative agreement vis-à-vis the localization of the
patterns, and in reasonable quantitative agreement vis-à-vis the heat transport with
the present experiments. However, variability in the primary parameters such as κm or
γ may be qualitatively different from variability in Ra. This difference occurs for two
reasons. The first is that in the equations of motion κm and γ are subject to spatial
gradients, directly or as part of the reduction of the equations of motion, whereas Ra
in the analysis of Zimmermann et al. is not. The second is that spatial variations in
the effective conductivity can (but do not necessarily) lead to an imperfect bifurction,
as shown by Braester & Vadasz. We will present elsewhere theoretical studies which
focus directly on the variability of km or γ at the pore scale.

A particularly interesting feature of these experiments and those of Shattuck et
al. (1994, 1995, 1997) is that well-defined roll-like patterns occur typically for media
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with an ordered spatial structure. At this time, we do not know of a theory which
takes into account such periodic structure. Nevertheless, the roll states which evolve
for the regular media are, in many regards, in agreement with standard theoretical
models which assume a homogeneous system. Specifically, for the MST experiments,
the wavenumber, critical Rayleigh number, and stability properties are consistent
with theory, particularly given that the experiments pertain to relatively small aspect
ratios. Clearly, studies with larger aspect ratios would be useful in this regard. The
heat transport slope for the regular media is smaller by about a factor of 4 than
predictions, but again the effects of aspect ratio may be important. It is interesting
that the corresponding slope for the random media is much closer to the predictions
for homogeneous media.

Regarding porous media which vary periodically in space, it is possible to provide
a direction for theory and for future experiment. Specifically, if the pore structure
is periodic with wavevector k, then, at onset, the linearized solutions will have a
Floquet form for the velocity and temperature: exp(iqx)U(x), where U is periodic
in space with period determined by k. The effect of the lattice may be particularly
important for PMC with a binary mixture. In that case, both oscillatory modes and
stationary modes can occur. The nature of these modes may be strongly affected by
the periodicity of the matrix in the parameter regime in which the critical Rayleigh
numbers for the two kinds of modes are comparable.
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